
CONTENTS

1. PARTS OF THE INSTRUMENT 1
2. FEATURES 4
3. SPECIFICATIONS 5
4. STANDARD EQUIPMENT 8
5. LIETZ SYSTEM S3 STREAMLINED SURVEYING SOLUTIONS 9
6. POWER SUPPLIES 16
7. DISPLAY SYMBOLS 18
8. KEY FUNCTIONS 19
9. INTERNAL SWITCHES 22
10. OPERATION 23
10.1 PREPARATION FOR ANGLE MEASUREMENT 23
10.1.1 Battery, No. 6651-01: Mounting and check 23
10.1.2 Compensation of zenith angle 24
10.1.3 Centering the SET4A by adjusting tripod leg length 25
10.1.4 Focusing 25
10.2 ANGLE MEASUREMENT 26
10.2.1 Automatically indexing vertical circle 26
10.2.2 Angle measurement 27
10.2.3 Setting the horizontal circle to a required value 28
10.2.4 Repetition of angles 29
10.3 PREPARATION FOR DISTANCE MEASUREMENT 31
10.3.1 Prism constant correction 31
10.3.2 Atmospheric correction 32
10.3.3 Earth-curvature and refraction correction 34
10.3.4 Prism sighting 35
10.3.5 Mode selection 36
10.4 DISTANCE MEASUREMENT 37
10.4.1 Angle, distance and coordinates measurement 37
10.4.2 Stake-out measurement 40
10.4.3 Remote elevation measurement 42
10.4.4 Measurement of horizontal distance between two target points 44
11. SELF DIAGNOSIS 45
12. OPTIONAL ACCESSORIES 47
12.1 PRISMS 47
12.2 TRIBRACHS AND ADAPTORS 49
12.3 TARGETS 50
12.4 POLES 50
12.5 THERMOMETER AND ALTIMETER 51
12.6 DIAGONAL EYEPIECE 51
13. CHECKS AND ADJUSTMENTS 52
13.1 ANGLE MEASURING FUNCTION 52
13.1.1 Plate level 52
13.1.2 Circular level 54
13.1.3 Index error of the tilt angle sensor
54
54
13.1.4 Reticle adjustments 56
a) Perpendicularity of the reticle to the horizontal axis 56
b) Vertical and horizontal reticle line positions 57
13.1.5 Coincidence of the distance measuring axis with the reticle 60
13.1.6 Optical plummet 61
13.2 DISTANCE MEASURING FUNCTION 62
13.2.1 Check flow chart 62
13.2.2 Additive distance constant 63
14. FOR ANGLE MEASUREMENT OF THE HIGHEST ACCURACY 65
14.1 MANUALLY INDEXING VERTICAL CIRCLE BY V1, V2 65
15. FOR DISTANCE MEASUREMENT OF THE HIGHEST ACCURACY 67
15.1 ACCURACY OF MEASUREMENT OF ATMOSPHERIC CONDITIONS 67
15.2 TO OBTAIN THE ATMOSPHERIC PRESSURE 67
16. PRECAUTIONS AND MAINTENANCE 69
16.1 PRECAUTIONS 69
16.2 MAINTENANCE 70
17. ATMOSPHERIC CORRECTION CHARTS 71
18. INDEX 73
When the new SET4A is shipped, the tribrach clamp is fixed with a screw. Loosen it and leave it loose.

Fig. 1.2
(18) Tubular compass slot
(19 Battery
(10) Sensor index adjustment
cover
(1) Optical plummet focusing
ring
(22) Optical plummet eyepiece
(6) Power switch
(24) Horizontal clamp
(24) Horizontal fine motion screw
(24) Data output connector
(72) External power source connector
(3) Plate level
(29) Plate level adjusting screw
(30) Vertical clamp
(31) Vertical fine motion screw

Fig. 1.3
(32) Peep sight
(33) Telescope reticle adjustment
(30) Measure/track switch cover
(3) ppm switch
(34) Telescope plunging knob
(35) Return signal audio switch
(63) Return signal lamp
(39) Telescope eyepiece
(40) Telescope focusing ring

2. FEATURES

- Horizontal angle, zenith angle, slope distance, horizontal distance, height difference are displayed by key operation.
- Horizontal distance between two prism points and remote measurement of objects above and below a prism point are automatically calculated.
- Self-diagnostic function. If, for any reason, the SET4A is not functioning correctly during use, an error code is displayed.
- The tilt angle of the vertical axis can be measured by the internal sensor and displayed. By referring to the display, the SET4A can be leveled. The zenith angle is automatically compensated by the tilt sensor and the compensated angle displayed.
- Horizontal circle can be set to zero in any direction.
- The SET4A automatically switches off 30 minutes after the last operation to save battery power.
- A RS-232C data-out connector is standard.
- Measured data can be collected and stored by using a data collector.

3. SPECIFICATIONS

Distance measurement
Range: (When using Lietz/Sokkisha standard reflecting prisms Average conditions: (Slight haze, visibility about $12 .!$ miles, sünny periods, weak scintille tion)
1 -prism $3,300 \mathrm{ft}(1,000 \mathrm{~m})$
3-prism 5,300 ft ($1,600 \mathrm{~m}$)
Good conditions:
(No haze, visibility about 25 miles overcast, no scintillation)
1 -prism $4,300 \mathrm{ft}(1,300 \mathrm{~m})$
3 -prism 6,900 ft ($2,100 \mathrm{~m}$)
$\pm(5 \mathrm{~mm}+3 \mathrm{ppm} \cdot \mathrm{D})$
LCD 8-digit four display windows two on each face Maximum slope distance $6,561.67 \mathrm{ft}(1,999.999 \mathrm{~m})$ MEAS. $0.01 \mathrm{ft}(1 \mathrm{~mm})$ TRACK. $0.1 \mathrm{ft}(10 \mathrm{~mm})$

Measuring time:

asuring time.	Mode	
	MEAS.	TRACK.
Slope distance	$6 s+$ every 4 s	$6 s+$ every $0.4 s$
Horizontal distance		
Height difference		
Coordinates	$6 s+$ every 1 s	
Remote elevation	$1 \mathrm{~s}+$ every 0.5 s	
Horizontal distance between two points	$8 s+$ every 4 s	$8 \mathrm{~s}+$ every 1 s

Atmospheric correction: -99 ppm to +199 ppm (1 ppm per step)
Prism constant correction:

0 to -9 cm (1 cm per step)
Earth-curvature and refraction correction: Selectable ON/OFF
Audio target aquisition: Selectable ON/OFF

Signal source:
Infrared LED
Light intensity control: Automatic

Angle measurement
Telescope

Length:	6.7 inch $(170 \mathrm{~mm})$
Aperture:	1.8 inch $(45 \mathrm{~mm})$
Magnification:	$30 \times$
Resolving power:	$3^{\prime \prime}$
Image:	Erect
Field of view:	$1^{\circ} 30^{\prime}(26 \mathrm{ft} / 1,000 \mathrm{ft})$
Minimum focus:	$4.3 \mathrm{ft}(1.3 \mathrm{~m})$

Horizontal circle
Type:
Incremental
Minimum display: 5"
Vertical circle
Type:
Incremental with 0 index
Minimum display:
Accuracy

H:
5"
Standard deviation of mean of measurement taken in positions $\vee 1$ and V2 (DIN18723) 5"
V:
5"
Automatic compensator
Selectable ON/OFF
Type:
Liquid
Minimum display: 5"
Range of compensation: $\pm 3^{\prime}$
Display
Range:
Measuring mode
Horizontal angle:
Vertical angle:
Measuring time:
$-1,999^{\circ} 59^{\prime} 55^{\prime \prime}$ to $1,999^{\circ} 59^{\prime} 55^{\prime \prime}$

Right/Left/Repetition of angles
Zenith 0° or Horizontal 0° or
Horizontal $0^{\circ} \pm 90^{\circ}$
Less than 0.5 s

Sensitivity of levels

Plate level:	$30^{\prime \prime} / 2 \mathrm{~mm}$
Circular level:	$10^{\prime} / 2 \mathrm{~mm}$
Optical plummet	
Image:	Erect
Magnification:	$3 \times$
Minimum focus:	$0.3 \mathrm{ft}(0.1 \mathrm{~m})$
Data output:	Asynchronous serial. RS-232C
	compatible Self-diagnostic function:
Provided	
Power saving cut off:	30 minutes after operation
Operating temperature:	$-4^{\circ} \mathrm{F}$ to $+122^{\circ} \mathrm{F}\left(-20^{\circ} \mathrm{C}\right.$ to $\left.+50^{\circ} \mathrm{C}\right)$
Power source:	Ni-Cd battery, No. $6651-01(6 \mathrm{~V})$

Working duration:

Charging time:

Instrument height:
Size (without handle):
Weight:
About 600 measurements at $77^{\circ} \mathrm{F}$, distance and angle measurement; 13 hours at $77^{\circ} \mathrm{F}$, angle measurement only.
(About 4,000 measurements, distance and angle measurement; 90 hours at $77^{\circ} \mathrm{F}$, angle measurement only, with optional battery No. 6661-02.)
12 hours, standard charger No. 6855-01
(1 hour, optional charger No. 685502, No. 6855-03)
9.29 inch (236 mm)
$6.6(\mathrm{~W}) \times 6.7(\mathrm{D}) \times 13.0(\mathrm{H})$ inch $(168 \times 170 \times 330 \mathrm{~mm})$
$16.7 \mathrm{lbs}(7.6 \mathrm{~kg})$ (w/internal battery)

4. STANDARD EQUIPMENT

Fig. 4.1

5. LIETZ SYSTEM S3 STREAMLINED SURVEYING SOLUTIONS

The compiete, proven sysem for fied measurement, data collecion, data processing, printing and plotting.
Start an all-day job and finish before noon?
When you work with the betz System S3, you'li find yoursel doing just that. This proven field-to-office connection doubles your procuctivity and at the some time, actually improves your accuracy.
Using 53 components, you can be twice as competitive on every job. Twice as profitable.
One sighting with a SET Total Station gives you simultaneous distance and angle measurements. This data is then fed electronically into the SDR Electronic Field Book. Electronically capturing the data eliminates keying-in errors and the need for handwritten notes. From here, data can be electronically transmitted into SDR MAP or SDR LINK surveying software on your IBVI-XT/AT or 100% compatible computer.

System S3 Software includes the following programs:

SDRLINK

Is an automated data communications program allowing for data to be transferred from the SDR Electronic Field Book to your computer. SDRLINK also has the ability to reduce field angles and distances to a coordinate database. ASClI files can be generated from the information that has been stored in the coordinate database.

SDRMAP

Is an automated plotting program which includes the SORLINK program. SDRMAP uses the codes that were entered into the SDR Eiectronic Field Book to automatically generate a detailed plot of information. SDRMAP includes user-definable symbols, line types and code libraries. Plot files can be displayed on the computer screen, plotted on supported plotters, or may be sent to a CAD program using the DXF file creation.

SDRCONTOUR

Is an automated contour calculations module which generates contours from the information transferred from the SDR Electronic Field Book. Definition of break lines, boundaries and omitted areas may be selected from the SDR file or graphically at the computer using a mouse. All plotting is performed by SDRMAP.

SDRcalc*

Is the COGO module that allows for defining coordinate information using coordinate geometry routines. Routines include: Traverse entry and adjustment, bearing/bearing intersection, bearing/distance intersection, curve calculations, establishment of parallel and perpendicular lines, subdivide a line, and area calculations. All plotting is performed by SDRMAP.

SDRROAD*

Is a module of SDRMAP that performs the vertical geometry computations for road design. SDRROAD supports a range of methods for specifying the profile of vertical geometry, including the application of super elevation. Up to seven profile lines can be handled simultaneously.

SDRPROFILE*

Plots profiles and cross sections of natural and design surface data such as road cuts and fills, stockpiles, etc. Allows cross section data to be entered in the format of distance along the route (stationing), offset to the center line of the route, and height -either as reduced data or in level book format.

SDRvolume*

Is a module of SDRMAP that has the ability to calculate volumes in three different ways. 1. compute end areas between two surfaces at each cross section and multiply these by the distance between the sections. 2. compute volume between one or two planes and a surface from the areas of the triangles in the digital terrain model, multiplied by their average height above the planes. 3. Compute and plot the lines of no cut/fill after merging two triangulated digital terrain models.

SDRDigitize*
Is a module of SDRMAP that allows for a quick and easy means of converting data in the form of plans and maps into data which can be computer processed for subdivision layout, contouring, area computation or road design.

* Contact your local Lietz Authorized dealer for availability and cost.

You and your Lietz System S3 can do it all with a minimum amount of training.
The Lietz nationwide organization of more than 50 Systems - Centers backs System S3 to give you all the training, service and software support you need. The Lietz Warranty insures your - satisfaction. Leasing plans are also available from your local m Authorized Distributor.

Fig. 5.1

Fig. 5.2

202S MODEM

Universal Data system 2025 LP Modem for use with SDR Electronic Field Book.
Note: SDR Electronic Field Books must be used with 2025 modem to allow acoustic transmissions.
Lietz No. 5300-17

SDR ELECTRONIC FIELD BOOKS

The SDR collects and stores slope distance, zenith and horizontal angle data from the SET.
Calculations can be performed on the data so that the measurements can be verified in the field.
The stored data can be transmitted to a data processing system.
Lietz No. 5300-20 SDR20 Electronic Field Book with 32 K memory complete with Sokkisha cable (5303-04), female DB-25 adaptor (5300-09), operation manual (5300-08) and field case (5290-15).

Lietz No. 5300-22 SDR22 Electronic Field Book with 64 K memory complete with Sokkisha cable (5303-04), female DB-25 adaptor (5300-09), operation manual (5300-08) and field case (5290-15).
Lietz No. 5300-24 SDR24 Electronic Field Book with 128 K memory. Data collection routines to support Wild, Topcon, Pentax and Elta $46 R$ instruments. Includes same accessories as SDR22.)

MOUNTING BRACKET

Fits on Lietz No. $7512-52$ Triposs and rolds SDR Eiectronic
Fied Eooks for any hand held calculator) in such a way that it rotates with the instrument for convenient and easy operation. Avaliabie in right hand or lef́t hand configurations.
Lietz No. 5300-10 (Right hand)
Lietz No. 5300-11 (Left hand)

Fig. 5.3

6. POWER SUPPLIES

The SET4A can be operated with the following combinations:

To charge the battery, use only the recommended charger.

1) Charge the battery at least once a month if it is not used for a long time.
2) Charge the battery at a temperature between $50^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}$ $\left(10^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$.
3) Before using No. 6861-01, set the voltage selector to the proper voltage.
4) No. 6860-02 has a breaker switch. Normally the red mark appears on the breaker. If not, set the red mark in place.
5) When using a car battery, make sure that the polarity is correct.
6) Make sure that the cigar lighter has 12 V output and that the negative terminal is grounded.
7) When charging the battery, first connect it to the battery charger and then connect the charger to the power supply. Check that the battery charger light is on. If not switch power supply off and on again until the light comes on.
8) The battery charger may become warm while charging. This is normal.
9) Do not charge the battery for any longer than specified.
10) Store the battery in a place where the temperature is between $32^{\circ} \mathrm{F}$ to $104^{\circ} \mathrm{F}\left(0^{\circ} \mathrm{C}\right.$ to $\left.40^{\circ} \mathrm{C}\right)$.
11) Battery operating life is shortened at extreme temperatures.

7. DISPLAY SYMBOLS

Fig. 7.1

Fig. 8.2

Select theodolite mode.

- Stop data entry before has been pressed.
- Stop measurement and transfer to basic mode.
sEiT - Set horizontal angle to zero. To confirm zero setting, press 5ind
(7)
- Enter "7".
- Measure slope distance.

E

- Enter " 8 ".
- Measure horizontal distance.

0

- Enter " 9 ".
- Measure height difference.

BCL

- Change the sign of data before entry.
- Recall data from memory.

5

- Enter decimal point.
- Measure stake-out distance.

IT

- Enter "4".
- Measure N- and E-coordinates.
- Enter " 5 ".
- Measure remote elevation.

Enter " 6 ".

- Measure horizontal distance between two prism points.
- Clear entry.
- Enter stake-out distance.
©
- Enter " 0 ".
- EDM power ON/OFF for locating prism.
[8
- Enter "1".
- Illuminate display and reticle of telescope for 30 seconds.

풀

- Enter " 2 ".
- Display vertical axis tilt angle ON/OFF.
(13)
- Enter " 3 ".
- Select horizontal angle to left, right or by repetition (accumulation).

EM

- Transfer entered data to memory. - Confirm input of sinit (setting horizontal angle to zero). - Hold/release horizontal angle.

9. INTERNAL SWITCHES

Switches are located under internal switch cover
0

Fig. 9.1

Switch	Function	
6	$\begin{gathered} \text { ON } \\ * \end{gathered}$	Manually index vertical circle by V1, V2 Automatically index vertical circle by transitting telescope
5	$\begin{aligned} & \mathrm{ON} \\ & * \\ & \mathrm{OFF} \end{aligned}$	Vertical circle compensator off Vertical circle compensator on
4	$\begin{gathered} \text { *ON } \\ \text { OFF } \end{gathered}$	Display distance in feet Display distance in meters
3	$\begin{aligned} & \text { ON } \\ & . \text { OFF } \end{aligned}$	Distance corrected for earth-curvature and refraction Distance not corrected for earth-curvature and refraction
2	$\begin{aligned} & \mathrm{ON} \\ & . \mathrm{OFF} \end{aligned}$	Display vertical angle with 0° horizontal $\pm 90^{\circ}$ Vertical angle display controlled by switch 1
1	$\begin{aligned} & \mathrm{ON} \\ & * \mathrm{OFF} \end{aligned}$	Display vertical angle with 0° horizontal on face V1 Display zenith angle

(The asterisk indicates the position of each switch at the time of shipping.)

- Before changing switch settings, turn power switch OFF.

10. OPERATION

10.1 PREPARATION FOR ANGLE MEASUREMENT

10.1.1 Battery, No. 6651-01: Mounting and check

1) Confirm that the power switch (3) is OFF.
2) Mount the battery No. 6651-01 in the SET4A.

Hold the left standard when inserting the battery. Push it until a click is heard to indicate correct location. Confirm that the battery is fixed securely.

Fig. 10.1

(To remove the battery, turn the power switch OFF and) push down the release button of the battery.
3) Two short audio signals are heard when the power is switched ON. The display shown in (1) and then (2) indicate the instrument is in normal condition.

Fig. 10.2

If the battery voltage is too low, the display will appear as shown below. Set the power switch OFF and replace the battery with a charged one, or charge the battery.

Fig. 10.3

10.1.2 Compensation of zenith angle

1) Remove the switch cover (4).
2) To use zenith angle with compensation, set switch 5 to OFF with a screw driver. (The factory setting is OFF.)
3) Replace the cover.

- Ill ON —— Without compensation
- 미I OFF —— With compensation

The _-* mark appears when the internal switch 5 is set to OFF. When this mark appears, the angle is compensated automatically.
${ }^{4 *} 00000^{\circ}$
Fig. 10.4
The internal tilt sensor has a range of $\pm 3^{\prime}$ and a resolution of $5^{\prime \prime}$. Read the automatically compensated zenith angle when the display is steady. When the display is not steady due to vibration or strong wind, set switch 5 to ON to use the SET4A without compensation.
10.1.3 Centering the SET4A by adjusting tripod leg length

1) Make sure that:
a. The tripod head is approximately level.
b. The tripod shoes are firmly fixed in the ground.
2) Set the SET4A on the tripod head. Tighten the centering screw.
3) Focus on the surveying point:
a. Turn the optical plummet eyepiece (22 to focus on the reticle.
b. Turn the optical plummet focusing ring (3) to focus on the surveying point.
4) Turn the leveling foot screws (12) to center the surveying point in the reticle.
5) Observe the off-center direction of the bubble in the circular level (10. Shorten the leg nearest that direction, or extend the leg farthest from that direction.
Generally, two legs must be adjusted to center the bubble.
6) When centering of the circular level is completed, turn the leveling screws to center the plate level (30) bubble.
7) Look through the optical plummet again. If the surveying point is off-center, loosen the centering screw to center the surveying point on the reticle. Tighten the centering screw.
8) Repeat 6), 7) if the plate level bubble is off-center.

10.1.4 Focusing

1) Looking through the telescope, turn the eyepiece fully clockwise, then anticlockwise until just before the reticle image becomes blurred. In this way, frequent refocusing can be dispensed with, since your eye is focused at infinity.
2) Loosen the vertical 60 and horizontal clamp (24).

Bring the target into the field of view with the peep sight (82. Tighten both clamps.
3) Turn the focusing ring (40 and focus on the target.

Sight the target with the vertical (31) and horizontal fine motion screws (23. Focus on the target until there is no parallax between the target and the reticle.

Parallax:

Relative displacement of target image in respect to the reticle when observer's head is moved slightly before the eyepiece.
If sighting is carried out before parallax is eliminated, this will introduce errors in reading and will impair your observations.

10.2 ANGLE MEASUREMENT

Make sure that:

a. The SET4A is set up correctly over the surveying point.
b. Battery voltage is adequate.

10.2.1 Automatically indexing vertical circle

1) Turn the power switch (33 ON.

Make sure that the display appears as shown below.

Fig. 10.5
2) Loosen the vertical clamp (30, and use the telescope plunging knob 34 to rotate the telescope completely. (Indexing occurs when the objective lens crosses the horizontal plane in position V1.)
When the vertical circle is indexed, an audio signal is given and the display appears as below.

Fig. 10.6

Angle measurement can now begin.
Note: When the power switch is turned off for any reason the vertical index is lost. When the power switch is turned back on, the vertical index must be redeter mined.

10.2.2 Angle measurement

Before this procedure, index the vertical circle.

1) Select the horizontal angle right or left with according tc measuring method.

Fig. 10.7
When is pressed, the display changes alternately as shown in Fig. 10.7.
2) Sight the first target A.
3) Press sen then to set the horizontal angle display to 0°.

" ${ }^{\prime \prime} 00000^{\prime \prime}$
Fig. 10.8
4) Use the horizontal clamp (3) and the vertical clamp (30) to sight the second target B.

Fig. 10.9
The displayed horizontal angle is the angle between targets A and B.

10.2.3 Setting the horizontal circle to a required value

To set the horizontal circle to the reference target, for example 90웅́́:

1) Loosen the horizontal clamp (24) and the lower clamp 6 and hold the upper alidade lightly. Turn the circle positioning ring (14) until the display becomes about 90° and tighten both clamps. Turn the horizontal fine motion screw (2) until the desired angle is displayed.
Note: When using the lower clamp 6, push in the cover 8
2) Press

Fig. 10.10

Fig. 10.11
3) Turn the instrument and sight the target.
4) Press to release the display hold.

The required horizontal circle value is now set to the reference target.
v $87^{7^{-2+}} 10^{\circ} 40^{n}$

$$
90^{\circ} 10^{\circ} 20^{\prime \prime}
$$

Fig. 10.12
10.2.4 Repetition of angles

Repetition of angles from $-1,999^{\circ} 59^{\prime} 55^{\prime \prime}$ to $1,999^{\circ} 59^{\prime} 55^{\prime \prime}$ is displayed by using lide

Fig. 10.13

1) Press to select repetition of angle.

H $\gg \ldots \begin{aligned} & \text { Repetition of angle } \\ & \text { display }\end{aligned}$
Fig. 10.14
2) Sight target A, and press six then [ixit
v $86^{\circ-42^{*}} 15^{\prime \prime}$
siocing"
Fig. 10.15
3) Use the horizontal clamp (43) and the horizontal fine motion screw (23) to sight target B.

Fig. 10.16
4) Press to hold the horizontal angle display.
5) Use the lower clamp 6 and the horizontal fine motion screw (36) to turn back to target A.

Fig. 10.17
6) Press to release the display hold.
7) Use the horizontal clamp and the horizontal fine motion screw to sight target B.

Double angle 37 isci40"

Fig. 10.18
8) Repeat 4) to 7) steps to measure repetition of angles.
9) To release the repetition of angle display, press

10.3 PREPARATION FOR DISTANCE MEASUREMENT

10.3.1 Prism constant correction

1) Remove the prism constant switch cover (1) with a coin.
2) Use the screwdriver to turn the prism constant setter to match the reflecting prism constant correction value.
i.e. For a prism constant correction value of -3 cm , set the index to $3(-3 \mathrm{~cm})$.

Fig. 10.19
3) Replace the cover.

Prism constant values of Sokkisha reflecting prisms.
The prism constant of the AP series prisms is 30 mm (the same value as the previous Sokkisha prism) using the prism spacer AP01S (standard accessory). The constant can be changed to 40 mm by removing the prism spacer.

Fig. 10.20
When using reflecting prisms with constant values other than the above, a prism constant correction of 0 cm to -9 cm can be set in steps of 1 cm using the prism constant setter.

10.3.2 Atmospheric correction

The SET4A is designed so that the correction factor is 0 for a temperature of $+59^{\circ} \mathrm{F}\left(+15^{\circ} \mathrm{C}\right)$ and an atmospheric pressure of 29.9 inchHg (760 mmHg). The correction factor is obtained from the pressure and temperature as follows.

1) Measure the temperature and atmospheric pressure with a thermometer and a barometer.
Pressure can be obtained from weather station sea level data by correcting for altitude. For altitude correction see 15.2.

- To convert millibars to inch Hg multiply by 0.0295 .
- To convert mmHg to inchHg divide by 25.4 .
- To convert temperature from Centigrade to Fahrenheit, use the formula:

$$
{ }^{\circ} \mathrm{F}=\frac{9}{5}{ }^{\circ} \mathrm{C}+32
$$

2) Read the correction factor from the atmospheric correction table on pages 71 and 72 .
Example: Temperature $+77^{\circ} \mathrm{F}\left(+25^{\circ} \mathrm{C}\right)$ Atmospheric pressure 29.5 inch $\mathrm{Hg}(750 \mathrm{mmHg})$ Correction factor is +13 ppm .

Fig. 10.21

Fig. 10.22
3) Set the ppm switch 37 to +13 .
4) To obtain the atmospheric correction factor by computation. a. inch $\mathrm{Hg}-{ }^{\circ} \mathrm{F}$ system (English):

Atmospheric correction factor

$$
X=278.96-\frac{10.5 \times P}{1+0.002175 \times t}
$$

P: Atmospheric pressure in inchHg
t : Temperature in Fahrenheit
Example: $\mathrm{P}=29$ inch $\mathrm{Hg}, \mathrm{t}=+60^{\circ} \mathrm{F}$
$\mathrm{ppm}=278.96-\frac{10.5 \times 29}{1+0.002175 \times 60}=9.61 \fallingdotseq 10$
Set the ppm switch to +10 .
b. $\mathrm{mmHg}-{ }^{\circ} \mathrm{C}$ system (Metric):

Atmospheric correction factor

$$
X=278.96-\frac{0.3872 \times P}{1+0.003661 \times t}
$$

P : Atmospheric pressure in mmHg
t : Temperature in Centigrade
5) For slope distances equal to or more than $6,561.68 \mathrm{ft}$ $(2,000.000 \mathrm{~m})$ (exceeding the maximum display $6,561.67 \mathrm{ft}$ $(1,999.999 \mathrm{~m})$), the ppm switch should be set to 0 and the corrected slope distance calculated by the formula:

$$
D=(6,561.68+d) \times\left(1+\frac{X}{1,000,000}\right)
$$

D: Corrected slope distance
d : The display of slope distance when ppm is set to 0
X : Correction factor in ppm
Example: Slope distance $6,594.48 \mathrm{ft}$ (displayed as 32.80 ft)
$X=+5 \mathrm{ppm}$
$D=(6,561.68+32.80) \times\left(1+\frac{5}{1,000,000}\right)$
$=6,594.51 \mathrm{ft}$

10.3.3 Earth-curvature and refraction correction

1) Remove the internal switch cover (4)
2) To correct horizontal distance and height difference for earthcurvature and refraction, set switch 3 to ON with a screwdriver.
3) Replace the cover.

c而 ON - Correction is applied.
\rightarrow Inil OFF-Correction is not applied.

Fig. 10.23

- This correction is performed in the measurement of horizontal distance and height difference.
The value displayed by the SET4A is computed by the following formula:

When the switch is ON
Horizontal distance after correction

$$
H^{\prime}=S \times \sin Z-\frac{1-\frac{K}{2}}{R} \times S^{2} \times \sin Z \times \cos Z
$$

Height difference after correction

$$
V^{\prime}=S \times \cos Z+\frac{1-K}{2 R} \times S^{2} \times \sin ^{2} Z
$$

When the switch is OFF

$$
\begin{array}{ll}
\text { Horizontal distance } & H=S \times \sin Z \\
\text { Height difference } & V=S \times \cos Z
\end{array}
$$

S : Slope distance (value after atmospheric correction)
Z: Zenith angle
K : Atmospheric refraction constant (0.142)
R: Radius of the earth $\left(2.09 \times 10^{7} \mathrm{ft}\right)$

b. When the reflected light is received by the telescope, an audio signal is heard and the return signal lamp lights up.

When the light intensity coming back from the prism is very high, the return signal lamp may light up, even for a slight mis-sighting. Make sure that the target center is sighted correctly.
4) Switch off the audio target acquisition.

10.3.5 Mode selection

1) Select the mode switch 63 to MEAS. for fine measurement, or TRACK. for tracking.

Fig. 10.25

MEAS.: Measures in hundredths of a foot, first after 6 to 8 seconds, then every 4 seconds.
TRACK.: Measures in tenths of a foot, first after 6 to 8 seconds, then every 0.4 to 1 second.

Make sure that:
a. The SET4A is set up correctly over the surveying point.
b. The feet/meter switch, prism constant switch, earthcurvature refraction switch and ppm switch are set correctly.
c. Battery voltage is adequate.
d. Indexing the vertical circle is complete.
10.4.1 Angle, distance and coordinates measurement

1) Press $[$ to change from angle measurement mode to basic mode.

Fig. 10.26

2) Press ${ }^{\text {․ }}$ 10.3.4)
3) Press to measure slope distance.

The following display appears showing that the slope distance measurement is being performed.

4) The slope distance and the zenith angle will be displayed after about 6 seconds.

Zenith angle

Fig. 10.28 \square Slope distance: 769.58 ft (Fine measurement)

Slope distance will continue to be measured every 4 seconds.

- Maximum display for slope distance is $6,561.67 \mathrm{ft}$ $(1,999.999 \mathrm{~m})$. For longer slope distances, see 10.3.2.
- When the following keys are pressed instead of in step 3), the measurement corresponding to each key is performed.

Key
operation

During

 measurement国

-

Fig. 10.29
5) Press $\left[\begin{array}{l}\mathrm{ED} \\ \text { 50 }\end{array}\right.$ to stop measurement.

Note: The SET4A computes the coordinates using the following formulas:

1 K N -coordinate $=\mathrm{H} \cos \theta_{\mathrm{H}}$
$\underline{K} \mathrm{E}$-coordinate $=\mathrm{H} \sin \theta_{\mathrm{H}}$

Fig. 10.30
Surveying point (0,0)

- 38 -

10.4.2 Stake-out measurement

1) Stake-out data is a given distance where a stake is supposed to be driven into the ground.
The SET4A displays the measured distance minus the given distance (stake-out data).

Displayed value $=$ Measured value - Stake-out data
2) Entry of stake-out data

The stake-out data need to be entered once for the slope distance, horizontal distance, height difference or remote elevation measurement.
The SET4A should be in the basic mode for data entry.

$$
\text { En } \rightarrow \text { Enter data }
$$

- To clear the entry halfway, press 땀.
- To stop the entry halfway, press
- The range of stake-out data is between $-9,999.99 \mathrm{ft}$ $(-9,999.999 \mathrm{~m})$ and $9,999.99 \mathrm{ft}(9,999.999 \mathrm{~m})$.
- The data once entered is stored until the power switch is turned OFF, then becomes 0 .

3) Confirmation of stake-out data

- To correct the stored data, re-enter it.

4) Measurement

The following measurements can be performed with s-o.

Fig. 10.32
Example: Horizontal distance stake-out measurement when stake-out data is 90.5 feet.

- 40 -

10.4.3 Remote elevation measurement

At certain surveying points e.g. power transmission lines or cables supporting bridges, etc., a reflecting prism cannot usually be positioned. In such cases the remote elevation measurement makes height differences easy to measure.

Fig. $\mathbf{1 0 . 3 5}$

1) Between the ground and the object
a. Set up a reflecting prism under the object and measure the prism center height from the ground with a tape measure. - Use an optical plummet to set the prism accurately.
b. Enter the height, h_{1} measured in step a., as a positive value, as stake-out data.
Example: The prism center height from the ground is 5.20 ft .

Fig. 10.36

- 42 -

c. Sight the reflecting prism and press

Press after the distance measurement data is displayed.

ig. 10.37

- The measured value is stored in the SET4A. d. Press s-0, then

so

During measurement

Measured value

Fig. 10.38

- When the SET4A is sighted on the prism, the height, h_{1}, measured with a tape measure (the prism height from the ground) will be displayed.
e. Sight the object. The object height from the ground, h, will be displayed in the lower display.

Fig. 10.39

- The range of measurement is between vertical angles of -89° and 89°.
10.4.4 Measurement of horizontal distance between two target points
Horizontal distance L and height difference H between two points can be measured.

Fig. 10.40

1) Set up the reflecting prisms P_{1}, P_{2}, on target points $1,2$.
2) Sight the prism P_{1} and press .

Press after the distance measurement data is displayed.

Fig. 10.41

- The measured value is stored in the SET4A.

3) Sight the prism P_{2} and press P.

Fig. 10.42

11. SELF DIAGNOSIS

If there is any fault in the measuring function, the error codes shown in the following table will be displayed.

| Display | Meaning | Action |
| :--- | :--- | :--- | :--- |

Display	Meaning	Action
$E \quad E!$	Error when measuring the initial slope distance during either remote elevation or horizontal distance between two points measurement.	Sight the reflecting prism to perform slope distance measurement again.
E E9	During remote elevation measurement, the vertical angle is more than $\pm 89^{\circ}$ or the measured distance is more than $\pm 9,999.999 \mathrm{~m}$.	Press \square to stop measuring.
	The measured distance is more than $\begin{aligned} & \pm 19,999.99 \mathrm{ft} \\ & (\pm 19,999.999 \mathrm{~m}) . \end{aligned}$	Press to stop measuring.

* If the SET4A is rotated faster than four revolutions per second, the error indication "E100" or "E101" is displayed.

When the error indication " E " appears with any number other than the ones above, please contact our agent.

Precautions

i) Carefuly face the reflecting prism towares the instrument; sight the target center accurately.
2. To use the triple prism assembly AP31 or AP32 as a single prism le.g. for short distances), mount the single prism APO1 in the center hole of the triple prism holder.
3) Check that " 230 " (the height of the SET4A) is displayed in the window of the irstrument heignt adaptor AP41.
The height of the AP41 can be adjusted as follows:
(1) Loosen the two fixing screws.
(2) Turn the center part counterclockwise to unlock it.
(3) Move it up or down until " 236 " appears in the window.
(4) Turn the center part clockwise to re-lock it.
(5) Tighten the fixing screws.

Fig. 12.2

Fig. 12.3
4) Use the plate level on the AP41 to adjust the tribrach circular level as in 13.1.2.
5) Check the optical plummet of the AP41 as in 13.1.6. After all checks and adjustments have been completed, make sure that the AP41 optical plummet sights the same point as the optical plummet of the SETAA.

TRIBRACH ADAPTOR
Adap:s from 58×11 threat : Lietz or other brand tribrach
Allows ins:allation of Lietz prism or other $5 / 8 \times 11$ female-thread as cesseries in:o tibrach. No. 7311.37

Fig. 12.6

TRIBRACH ADAPTOR

Similar to above except with re movable, rota:able center. No. 7311.38

Fig. 12.7

TRIBRACH ADAPTOR
Accepts prisme with 24.8 mm bay-onet-:ype base.
No. 731:-40

OPTICAL PLUMMET TRIBRACH ADAPTOR
Similar to above but with rotatircg vertical axis and optical piummet for precise positioning of prisms in: tribrachs without optical piummet.
No. 7311.41

12.3 TARGETS

traverse set
WITH CARRYING CASE. FOr precise triangulation su'vevs, day or nghe.
No. 7312-45 Se: contans two each of the felowing:
7311-35 Optical Plumme: Tr brachs 73:1.37 Tribrach aceptors
7312-39 llumination urits
7312-40 Rotatable sighting targets mounted on a base

Fig. 12.8

LARGE TARGET

L.arge :arge: $8 \%{ }^{\prime \prime} \times 113 /{ }^{\prime \prime}$ attaches to regular :arge: (No. 7312-40) to provide increased sighting range.
No. 7312-42

12.4 POLES

RANGE PLUMBING POLE

Aluminum tubing and brass fitangs with herdened steel point. Height adiusts from 56" to 100". Upper section mountirg stud accepts single or triple rerro prisms; locking disc prevents prism rotation. Includes replace:ble roc level (No. 8071-90). No. $7270-48$

Fig. 12.9

HEAVY-DUTY GRADUATED TELESCOPING PRISM POLE

- Aluminem lubing with brass ittirgs; outside diameter 1% inches
- Positive collet-type locking system
- Male $5: 8 \times 1$ prism mouriting stuc. Locking dise secures prism
- Replaceable poini 18078-50)
- Acjustable hegn:s-54:0 100 inches
- Engraved graduations on extending member for measuring prism height (feet, tenths and metric)
No. 7270-44

Fig. 12.10

TRIPODS

Tripocs recommended for use with these accessories fnot included in price):
No. 7512-52 Wice Frame
Extension Leg (wood)
No. 7536-75 Wide Frame,
Exiension Leg (aluminum)

PRISM POLE TRIPOD

- Easy-io-use, fully adjustable iripod for Lietz Nos. 7270-48 and 7270-44 Prism Poles
- Allows fast leveling while remaining centered on point
- Spring-action leg clamps work with one hanc for rapid setup
- Lets you take foresignts or backsights to a reliable, steady reference

No. 8078.96

Fig. 12.11

RANGE POLE TRIPOD
Heavy-duty.
Mace with meta center castings. Rustproof steel legs. adjustable for uneven ground. No. 8078-95

12.5 THERMOMETER AND ALTIMETER

POCKET THERMOMETER
Refillable metal case. Mercury filed. Range: -30° :0 $120^{\circ} \mathrm{F}$ in 2 increments
No. 8006-12

BAROMETER/ALTIMETER
with watch-type case.
English-Rarge 0 to $15,000 \mathrm{ft}$. No. 8001-70

Fig. 12.14
12.6 DIAGONAL EYEPIECE \#7311-18

The diagonal eyepiese is convenient for steep observations and in places where space around the instrumen: is limited.
Remove the eyepiece 69 by loosening the mounting ring, and screw in the diagonal eyepiece.

Setting up the 7311-18

Fig. 12.15

Fig. 12.12

13. CHECKS AND ADJUSTMENTS

It is imporant that the SETAA is periodically checked and adjusted. In axdition, the irstrument should be chevered after veansportation, long storage or when damage to the instrument is suspected to have occurred. The checks should be performed as follows:

13.1 ANGLE MEASURING FUNCTION

13.1.1 Plate level

13.1.2 Circular leve
13.1.3 Index error of the tilt angle sensor
13.1.4 Reticle adjustments
a) Perpendicularity of the reticle to the horizontal axis
b) Vertica! and horizontal reticle line positions
13.1.5 Coincidence of the distance measuring axis with the reticle
13.1.6 Opical plammet

13.1.1 Plate level

The glass iube of the plate leve is sensitive to temperature change or shock. Ea sure to check the plate level 3 before use.

1) See Figs. 13.1 and 13.2 for relarion between bubble movement and rotation of the leveling screws.

Fig. 13.1

Fig. 13.2
2) Turn the upper part of the SET4A until the plate level is parallel to a line between leveling screws A and B. Then center the bubble using leveling screws A and B.

$$
-52-
$$

Fig. 13.3
3) Turn the upper par: 90° unt ine plate level is rempendiculer to a line between leveling screws A and 3 . Then center the bubble by turning leveling screw C .

Fig. 13.4
4) Turn the upper part 180°. Correct any bubble oeviation by half the amount with leveling screw C.

Fig. 13.5
5) Correct the remaining half deviation by turning the plate level adjusting screw 30 with the adjusting pin.

Fig. 13.6
6) Repeat 2) to 5) above until the bubble remains centered for any position of the upper part.

Fig. 13.7

- 53 -

13.1.2 Circular level

When the plate level adjustment is complete, the circular level (10) should be checked. Note the direction off-center of the bubble. Loosen the adjusting screw $(9$ farthest from that direction and tighten the other adjusting screws to center the bubble. Ensure that the tension of each screw tightening is the same after adjustment.

Fig. 13.8
13.1.3 Index error of the tilt angle sensor

When the circular level adjustment is complete, the index error should be checked.

1) After indexing the vertical circle, tighten the vertical clamp (10).
2) Press sis then press to display the tilt angle.

Tilt angle $a=-10^{\prime \prime}$

Fig. 13.9
3) Loosen the horizontal clamp and turn the upper part through $180^{\circ} \pm 5^{\prime}$

> oingos

Tilt angle $\mathrm{b}=5^{\prime \prime}$

Fig. 13.10

- 54 -

4) Calculate $\frac{a+b}{2}=$ index error c

Example: $\frac{-10^{\prime \prime}+5^{\prime \prime}}{2}=-2.5^{\prime \prime}$
5) If the index error is less than $5^{\prime \prime}$, no adjustment is necessary.

For adjustment remove the sensor index adjustment cover (40) Return to 0° horizontal angle position.
Using a suitable flat screwdriver, adjust the internal screw until the upper display $\mathrm{d}_{0^{\circ}}=a-\mathrm{c}$.
Turn the upper part through 180°.
Adjust the internal screw until the upper display $d_{180^{\circ}}=b-c$.

Fig. 13.11
Example:
If $a=-20^{\prime \prime}, b=-10^{\prime \prime}$, index error $c=\frac{-20^{\prime \prime}+\left(-10^{\prime \prime}\right)}{2}=-15^{\prime \prime}$
$d_{0^{\circ}}=a-c=-5^{\prime \prime}$
$\mathrm{d}_{180^{\circ}}=\mathrm{b}-\mathrm{c}=+5^{\prime \prime}$

13.1.4 Reticle adjustments

a) Perpendicularity of the reticle to the horizontal axis

1) Select and sight a clear target on the upper part A of the vertical reticle line, Fig. 13.12.
2) Turn the telescope slowly upward with the vertical fine motion screw (10) until the target slides to the lower part B, Fig. 13.13. If the target is still centrally within the vertical lines, no adjustment is necessary. If necessary, adjust as follows.

Fig. 13.12

Fig. 13.13
3) Unscrew the reticle cover 33 .
4) Slightly loosen one vertical and one horizontal adjusting screw by a certain amount.
5) Place a small piece of plastic or wood against one side of the top adjusting screw as a buffer.
6) Look through the eyepiece and gently tap the piece of plastic or wood to rotate the reticle slightiy.
7) Re-tighten the two adjusting screws (loosened in 4)) by the same amount. Check the reticle perpendicularity again and readjust if necessary. Replace the reticle cover 63 .

Fig. 13.14
b) Vertical and horizontal reticle line positions

When the index error adjustment is complete, the position of the reticle should be checked.

1) Level the SET4A. Select a clear target at a horizontal distance of 200 to 300 feet.

Fig. 13.15
2) After indexing the vertical circle, sight the target and take the horizontal angle reading in position $V 1$, e.g. al $=18^{\circ} 34^{\prime} 00^{\prime \prime}$ and the vertical angle reading, e.g. $\mathrm{b}_{l}=90^{\circ} 30^{\prime} 10^{\prime \prime}$.

Fig. 13.16
3) Next in position V2, sight the same target. Take the horizontal angle reading, e.g. $\mathrm{a}_{r}=198^{\circ} 34^{\prime} 10^{\prime \prime}$ and the vertical angle reading, e.g. $\mathrm{b}_{r}=269^{\circ} 30^{\prime} 02^{\prime \prime}$.
4) Calculate $\mathrm{a}_{r}-\mathrm{a}_{l}, \mathrm{~b}_{r}+\mathrm{b}_{l}$.

$$
\begin{aligned}
& \mathrm{a}_{r}-\mathrm{a}_{l}=198^{\circ} 34^{\prime} 10^{\prime \prime}-18^{\circ} 34^{\prime} 00^{\prime \prime}=180^{\circ} 00^{\prime} 10^{\prime \prime} \\
& \mathrm{b}_{r}+\mathrm{b}_{l}=269^{\circ} 30^{\prime} 02^{\prime \prime}+90^{\circ} 30^{\prime} 10^{\prime \prime}=360^{\circ} 00^{\prime} 12^{\prime \prime}
\end{aligned}
$$

5) When the reticle is in the normal position, your results should show that $\mathrm{a}_{r}-\mathrm{a}_{l}$ is within $20^{\prime \prime}$ of 180° and $\mathrm{b}_{r}+\mathrm{b}_{l}$ is within $20^{\prime \prime}$ of 360°. If the difference of $\mathrm{a}_{r}-\mathrm{a}_{l}$ from 180° or $\mathrm{b}_{r}+\mathrm{b}_{l}$ from 360° is $20^{\prime \prime}$ or greater after several checks, adjust as follows:
6) While still in position V2, use the horizontal and vertical fine motion screws to adjust the lower display, a_{c}, and the upper display, bc, to read:

$$
\begin{aligned}
& \mathrm{a}_{c}=\frac{\mathrm{a}_{l}+\mathrm{a}_{r}}{2}+90^{\circ} \\
& \mathrm{b}_{c}=\frac{\mathrm{b}_{r}-\mathrm{b}_{l}}{2}+180^{\circ}
\end{aligned}
$$

Example:

$$
\begin{aligned}
& \text { If } \begin{aligned}
\mathrm{a}_{l} & =18^{\circ} 34^{\prime} 00^{\prime \prime} \quad \\
\mathrm{b}_{l}= & 90^{\circ} 30^{\prime} 12^{\prime \prime} \quad \mathrm{a}_{r}=198^{\circ} 34^{\prime} 26^{\prime \prime}
\end{aligned} \\
& \mathrm{a}_{c}==\frac{\mathrm{a}_{l}+\mathrm{a}_{r}}{2}+99^{\circ} 30^{\prime} 12^{\prime \prime} \\
&=\frac{18^{\circ} 34^{\prime} 00^{\prime \prime}+198^{\circ} 34^{\prime} 26^{\prime \prime}}{2}+90^{\circ} \\
&=14^{\prime} 13^{\prime \prime} \\
& \mathrm{b}_{c}=\frac{\mathrm{b}_{r}-\mathrm{b}_{l}}{2}+180^{\circ}=\frac{269^{\circ} 30^{\prime} 12^{\prime \prime}-90^{\circ} 30^{\prime} 12^{\prime \prime}}{.2}+180^{\circ} \\
&=269^{\circ} 30^{\prime} 00^{\prime \prime}
\end{aligned}
$$

7) Look through the telescope. The target is seen shifted from the vertical and horizontal reticle lines.
8) Remove the reticle adjustment cover 33 .

Fig. 13.17

13.1.5 Coincidence of the distance measuring axis with the

 reticleAfter the reticle has been checked, check the distance measuring axis relative to the reticle as follows.

1) Level the SET4A. Set up the reflecting prism at a horizontal distance of 160 to 330 ft (50 to 100 m).

Fig. 13.20
2) Sight the reflecting prism center and take the horizontal and zenith angle readings. (H and Z respectively)

Fig. 13.21
3) Press on the keyboard and make sure the return signal lamp 63 lights up.
4) Four more readings are necessary.

Turn the horizontal or vertical fine motion screw slowly until the return signal lamp goes off. Then take readings.
Readings H_{l}, H_{r} : when the telescope is directed to the left (right) of the sighted direction in 2) above.
Readings Z_{a}, Z_{b} : when the telescope is directed above (below) the sighted direction in 2) above.
5) Check the differences of $H_{l}\left(H_{r}\right)$ against H, and $Z_{a}\left(Z_{b}\right)$ against Z.
When the four differences obtained are larger than 3^{\prime}, the coincidence is normal. If any of the differences obtained are less than 3^{\prime}, please contact an authorized service facility for repair.

13.2 DISTANCE MEASURING FUNCTION

13.2.1 Check flow chart

13.2.2 Additive distance constant

The additive distance constant of the SET4A is adjusted to before delivery. However, the additive constant can change wit time and so should be determined periodically and then used t correct distances measured.

1) Determining the additive distance constant.

The most reliable method of determining the additive distanc constant is to test the SET4A on an established base line witt a maximum range of approximately $1,000 \mathrm{~m}$, and with 6 to intermediate stations spaced at multiples of the instrumen unit length, which is 10 m . Measurements should be taken ir all combinations of the 6 to 8 stations.
If an additive distance constant of greater than 5 mm is founc please contact our agent
2) Confirmation of the additive distance constant K if a base lint is not available.
a. Select points A and B on flat ground about 100 m apart and C in the middle.
b. Set up the SET4A at A, and measure the distance $A B$.

Note: Be sure prism height is the same as the height of the SET4A objective lens center. If ground is not level use an automatic level to set correct instrumen heights of all points.

Fig. 13.24
c. Shift the SET4A to C, and measure the distance $C A$ and CB.

Fig. 13.25
d. Compute the additive distance error K using the formula:

$$
K=\overline{\mathrm{AB}}-(\overline{\mathrm{CA}}+\overline{\mathrm{CB}})
$$

$\overline{A B}, \overline{C A}, \overline{C B}$: Average of ten measurements.
e. Obtain K value three times. If all K are greater than 5 mm , contact our agent.

14. FOR ANGLE MEASUREMENT OF THE HIGHEST ACCURACY

14.1 MANUALLY INDEXING VERTICAL CIRCLE BY

 V1, V2Like every theodolite, the SET4A will have a vertical index error. A vertical index error can be estimated as follows.

1) Turn the power OFF, remove the internal switch cover \boldsymbol{C} and set switch 6 to ON.
(When switch 6 is ON, the automatic indexing of the vertical circle by transitting the telescope is inactive.)
2) After leveling the SET4A, turn the power ON and make sure that the display appears as shown below.

Fig. 14.1
3) In position V 1 , accurately sight a clear target at a horizontal distance of about $100 \mathrm{ft}(30 \mathrm{~m})$.

Fig. 14.2
4) Press sitit then

H"40 $230^{\prime \prime}$
Fig. 14.3

- 65 -

5) Next in position $V 2$, accurately sight the same target.

Fig. 14.4
6) Press sit then When the vertical circle is indexed, the display appears as below.

Fig. 14.5

- If the power switch has been turned OFF, the vertical circle must be indexed again.
When moving the SET4A after measurement, turn the power OFF.

15. FOR DISTANCE MEASUREMENT OF THE HIGHEST ACCURACY

15.1 ACCURACY OF MEASUREMENT OF ATMOSPHERIC CONDITIONS

The relation between measured distance and the velocity of light is given by

$$
D=\frac{T}{2} C=\frac{T}{2} \frac{C_{0}}{n}
$$

T : The period between light emission and reception.
C: The velocity of light in the air.
C_{0} : The velocity of light in a vacuum.
n : Refractive index of the air.
The measured distance is affected by variation in the refractive index

$$
\frac{d D}{D}=-\frac{d n}{n} \fallingdotseq d n(\text { or } d D \fallingdotseq D \cdot d n)
$$

Therefore, the accuracy of measurement of the refractive index must be the same as that of the measured distance.
To calculate refractive index to an accuracy of 2 ppm , tempera ture must be measured to within $2^{\circ} \mathrm{F}\left(1^{\circ} \mathrm{C}\right)$ and pressure to within 0.2 inch $\mathrm{Hg}(5 \mathrm{mmHg})$.

15.2 TO OBTAIN THE ATMOSPHERIC PRESSURE

To obtain the average refractive index of the air throughout the measured light path, you should use the average atmospheric pressure.
If flat terrain there is little variation in the atmospheric pressure. In mountains, the following calculation should be used.

Example:

Fig. 15.1

By the Laplace formula

$$
Z_{n}-Z_{0}=18,400\left(1+0.00367 \frac{t_{n}+t_{0}}{2}\right) \log \left(P_{0} / P_{n}\right)
$$

t : Temperature (${ }^{\circ} \mathrm{C}$)
Z: Height above sea level (m)
P: Pressure (mmHg)

$$
P_{n}=10\left\{\log P_{0}-\frac{z_{n}-z_{0}}{18,400\left[1+0.00367\left(\frac{\operatorname{tn}+t_{0}}{2}\right)\right]}\right\}
$$

$$
\begin{aligned}
P_{0} & =760 \mathrm{mmHg} & \mathrm{Z}_{1} & =330 \mathrm{~m} \\
t_{0} & =20^{\circ} \mathrm{C} & \mathrm{Z}_{2} & =650 \mathrm{~m} \\
t_{1} & =20^{\circ} \mathrm{C} & \mathrm{t}_{2} & =18^{\circ} \mathrm{C}
\end{aligned}
$$

$$
P_{1}=10^{\left\{\log 760-\frac{330}{18.400(1+0.00367 \times 20)}\right\}} \fallingdotseq 731
$$

$$
P_{2}=10^{\left\{\log 760-\frac{650}{18,400(1+0.00367 \times 19)}\right\}} \fallingdotseq 704
$$

Average pressure: 717.5 mmHg
16. PRECAUTIONS AND MAINTENANCE

16.1 PRECAUTIONS

1) When the SET4A is not used for a long time, check it at least once every three months.
2) Handle the SET4A with care. Avoid heavy shocks or vibration.
3) If any trouble is found on the rotatable portion, screws or optical parts (e.g. lens), contact our agent.
4) When removing the SET4A from the carrying case, never pull it out by force. The empty carrying case should then be closed to exclude dust.
5) Never place the SET4A directly on the ground.
6) Never carry the SET4A on the tripod another site.
7) Protect the SET4A with an umbrella against direct sunlight, rain and humidity.
8) When the operator leaves the SET4A, the vinyl cover should be placed on the instrument.
9) Do not aim the telescope at the sun.
10) Always switch the power off before removing the internal battery.
11) Always remove the battery from the SET4A when returning it to the case.
12) Do not wipe the display (5, keyboard (15 or the carrying case with an organic solvent.
13) When the SET4A is placed in the carrying case, follow the layout plan.
14) Make sure that the SET4A and the protective lining of the carrying case are dry before closing the case.
The case is hermetically sealed and if moisture is trapped inside, damage to the instrument could occur.

16.2 MAINTENANCE

1) Wipe off moisture completely if the instrument gets wet during survey work.
2) Always clean the instrument before returning it to the case.

The lens requires special care. Dust it off with the lens brush first, to remove minute particles. Then, after providing a little condensation by breathing on the lens, wipe it with soft clean cloth or lens tissue.
3) Store the SET4A in a dry room where the temperature remains fairly constant.
4) If the battery is discharged excessively, its life may be shortened. Store it in a charged state.
5) Check the tripod for loose fit and loose screws.

The chart shows the correction every two ppm, while the atmospheric correction can be applied to the SET4A for every ppm.

The specifications and general appearance of the instrument may be altered at any time and may differ from those appearing in catalogues and the operator's manual.Page
Accessories 9, 16, 47
Angle measurement 26
Angle measurement modes 27
Atmospheric correction 32
Audio switch 35
Batteries 16
Circular level adjustment 54
Curvature and refraction correction 34
Display limit 33
Display symbols 18
Distance measuring axis checking 60
Distance measurement 37
Distance measurement checking 63
Distance measurement flow chart 62
Error codes 45
Features 4
Focusing 25
Horizontal distance between two points 44
Indexing manually 65
Instrument part names 1
Keyboard functions 19
Maintenance 70
Optical plummet adjustment 61
Parallax 26
Parts per million 33
Plate level adjustment 52
Power supplies 16
Powering up the SET4A 23
Precautions 69
Prism constant 31
Recalling data 41
Remote elevation measurement 42
Repetition of angle 29
Reticle adjustment 56
Right and left angles 27
Setting up over a point 25
Specifications 5
Stake-out measurement 40
Standard equipment 8
Switches, internal 20
Tilt angle sensor adjustment 54
Tracking mode 36
Zenith angle compensation 24

